Cancer is one of the leading causes of mortality worldwide, highlighting the urgent need for a deeper molecular understanding and the development of personalized treatments. The present study aims to establish a solid association between gene expression and patient survival outcomes to enhance the utility of the Human Pathology Atlas for cancer research. In this updated analysis, we examined the expression profiles of 6918 patients across 21 cancer types. We integrated data from 10 independent cancer cohorts, creating a cross-validated, reliable collection of prognostic genes. We applied systems biology approach to identify the association between gene expression profiles and patient survival outcomes. We further constructed prognostic regulatory networks for kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC), which elucidate the molecular underpinnings associated with patient survival in these cancers. We observed that gene expression during the transition from normal to tumorous tissue exhibited diverse shifting patterns in their original tissue locations. Significant correlations between gene expression and patient survival outcomes were identified in KIRC and LIHC among the major cancer types. Additionally, the prognostic regulatory network established for these two cancers showed the indicative capabilities of the Human Pathology Atlas and provides actionable insights for cancer research. The updated Human Pathology Atlas provides a significant foundation for precision oncology and the formulation of personalized treatment strategies. These findings deepen our understanding of cancer biology and have the potential to advance targeted therapeutic approaches in clinical practice. The Knut and Alice Wallenberg Foundation (72110), the China Scholarship Council (Grant No. 202006940003).
Read full abstract