Abstract The Massif Central area is the largest magmatic province of the West-European Rift system. The spatial-temporal distribution of Tertiary-Quaternary volcanism in the Massif Central, France, shows that three magmatic phases can be defined, each of them characterized by different volumes and different locations. The first event, termed the pre-rift magmatic event, is very scarce and restricted to the north of the Massif Central. It is suggested that this could result from lithospheric bending of the European lithosphere ahead of the incipient Alpine chain during the Paleocene. The second event, termed the rift-related magmatic event, is located in the north of the Massif Central only and is spatially connected with zones of high crustal thinning (i.e. the Limagne graben). It immediately follows Oligocene graben formation and associated sedimentation, and is represented by more than 200 scattered monogenic edifices. This second event can be attributed to partial melting as a consequence of lithospheric thinning that affected the north of the Massif Central during the rifting event. The lack of volcanism in the south during the same period of time is probably related to the very slight lithospheric thinning during the Oligocene. The third event, termed the major magmatic event, started first in the south in the upper Miocene at about 15 Ma, well after the end of the sedimentation. It is unrelated to any extensional event. This major magmatic event reached the north of the Massif Central at about 3.5 Ma, following a pause in volcanism of about 6 Ma after the rift-related magmatic event. These two episodes of the major magmatic event are spatially and temporally associated with the two main periods of uplift, suggesting a common origin for volcanism and uplift processes. The major magmatic event can be attributed to late thermal erosion of the base of the lithosphere above a mantle diapir, as suggested by seismic tomography data. This general magmatic evolution drawn from data at the Massif Central scale may apply to the Eger graben as well, as the three magmatic events described in this study (pre-rift magmatic event, rifting event and post-Miocene volcanic event) are also reported in the literature. This suggests that a single cause should explain the formation of the entire western European rift surrounding the Alpine mountain belt.