ABSTRACT A Stratigraphic model is proposed for the Jurassic sequence in Interior Oman. The model is based on regional well-log correlations, outcrop analysis and integration of Biostratigraphy. Large-scale architectures are restored using a well-to-well correlation technique, after the well-log markers of the relevant surfaces of sequence stratigraphy are identified. This identification is achieved by comparing well-log signatures to lithological and sedimentological columns of nearby exposed sections. The subsurface dataset consists of 19 wells arranged in two east-west profiles, 341 km and 332 km long. The Jurassic sequence in Interior Oman shows a general easterly thinning wedge and includes two hiatuses with marked age-gaps. Three major depositional episodes are identified: (1) a Pliensbachian-Toarcian coastal encroachment in a southward direction, represented by the dominantly clastic deposition of the Lower Mafraq Formation upon the Permian carbonates; (2) a general late Bajocian marine flooding (hybrid facies of marginal-marine environments of the Upper Mafraq Formation), followed through the Bathonian-Callovian by the carbonate Dhruma-Tuwaiq System which evolved through time from a low-angle, homoclinal ramp dipping in a (north) westwards direction, to a purely aggradational, flat-topped platform (upper Dhruma and Tuwaiq Mountain formations); (3) a Kimmeridgian-Tithonian onlap in an eastwards direction of finegrained limestones (Jubaila-Rayda) upon the post-Tuwaiq unconformity. Depositional hiatuses in the early Liassic and at the Early-Middle Jurassic transition are likely to reflect major eustatic sea-level lowstands. In contrast, subsurface correlations of the MFSs through the Dhruma-Tuwaiq indicate that the post-Tuwaiq unconformity is a low-angle (0.001 degrees) angular unconformity associated with tilting and truncation of the underlying sequences. Oxfordian sequences were probably never deposited in Interior Oman because of a lack of accommodation space and prolonged subaerial exposure. It is here proposed that the Upper/Middle Jurassic angular unconformity in Interior Oman was planed-off by subaerial carbonate dissolution during a steady, tectonically-driven uplift of the whole eastern Arabian shelf edge. The proposed geological model has several implications for the petroleum systems of Interior Oman. The geometric model predicts the distribution of the sedimentary facies, including source rocks, clastic and carbonate reservoirs, and seal facies. The occurrence of isolated Upper Mafraq-producing reservoir sands (i.e. Sayh Rawl field) are believed to be restricted to central and eastern Interior Oman. There are two other reservoir/seal combinations, both related to the Upper/Middle Jurassic unconformity: (1) truncation traps of the Dhruma-Tuwaiq below the unconformity (i.e. Hadriya and Uwainat reservoirs); (2) updip pinch-out trap of the Hanifa above the unconformity. Finally, it is believed that the early Late Jurassic general uplift and truncation of eastern Oman may have caused local remobilisation, updip migration, and loss to the surface of oil in reservoirs, initially generated from the prolific Al Huqf source rocks of Late Precambrian-Early Cambrian age.
Read full abstract