Hepatocytes are an important physiological model for in vitro studies of drug metabolism and toxicity. However, fresh hepatocytes are not always available and hence cyopreservation is needed to preserve large quantities until they are needed for these applications. Hepatocytes are extremely sensitive to damage induced by the freeze-thaw process, even after addition of traditional cryoprotectants such as dimethyl sulfoxide (DMSO). Furthermore, they do not proliferate in culture. We previously demonstrated that a crude wheat extract protects rat hepatocytes during cryopreservation and could provide a promising alternative to DMSO. We have considerably improved this novel cryopreservation procedure by using wheat extracts that are partially purified by either ammonium sulphate or acetone precipitation, or by using recombinant wheat freezing tolerance-associated proteins such as WCS120, TaTIL, WCS19, and TaIRI-2. These improved procedures enhance long-term storage (2-12 months) and recovery of large quantities of healthy cells after cryopreservation, and maintain the differentiated functions of rat hepatocytes, compared to freshly isolated cells, as judged by viability (77-93%), adherence (77%) and metabolic functions of major cytochrome P450 isoforms CYP1A1/2, CYP2C6, CYP2D2, and CYP3A1/2. The advantage of using wheat proteins as cryopreservants is that they are non-toxic, natural products that do not require animal serum, and are economical and easy to prepare.
Read full abstract