We investigated if learned associations between visual and auditory stimuli can afford full cross-modal access to working memory. Previous research using the impulse perturbation technique has shown that cross-modal access to working memory is one-sided; visual impulses reveal both auditory and visual memoranda, but auditory impulses do not seem to reveal visual memoranda (Wolff et al., 2020b). Our participants first learned to associate six auditory pure tones with six visual orientation gratings. Next, a delayed match-to-sample task for the orientations was completed, while EEG was recorded. Orientation memories were recalled either via their learned auditory counterpart, or were visually presented. We then decoded the orientation memories from the EEG responses to both auditory and visual impulses presented during the memory delay. Working memory content could always be decoded from visual impulses. Importantly, through recall of the learned associations, the auditory impulse also evoked a decodable response from the visual WM network, providing evidence for full cross-modal access. We also observed that after a brief initial dynamic period, the representational codes of the memory items generalized across time, as well as between perceptual maintenance and long-term recall conditions. Our results thus demonstrate that accessing learned associations in long-term memory provides a cross-modal pathway to working memory that seems to be based on a common coding scheme.
Read full abstract