In recent years, great breakthroughs have been made in gas explorations of the Upper Paleozoic bauxite series in the Longdong area of the Ordos Basin, challenging the understanding that bauxite is not an effective reservoir. Moreover, studying the reservoir characteristics of bauxite is crucial for oil and gas exploration. Taking the bauxite series in the Longdong area as an example, this study systematically collects data from previous publications and analyzes the petrology, mineralogy, oolitic micro-morphology, chemical composition, and other sedimentary characteristics of the bauxite series in the study area using field outcrops, core observations, rock slices, cast slices, X-ray diffraction analysis, scanning electron microscopy and energy spectra, and so on. In this study, the oolitic microscopic characteristics of the bauxite reservoir and the significance of oil and gas reservoirs are described. The results show that the main minerals in the bauxite reservoir are boehmite and clay minerals composed of 73.5–96.5% boehmite, with an average of 90.82%. The rocks are mainly bauxitic mudstone and bauxite. A large number of oolites are observable in the bauxite series, and corrosion pores and intercrystalline pores about 8–20 μm in size have generally developed. These pores are important storage spaces in the reservoir. The brittleness index of the bauxite series was found to be as high as 99.3%, which is conducive to subsequent mining and fracturing. The main gas source rocks of oolitic bauxite rock and the Paleozoic gas series are the coal measure source rocks of the Upper Paleozoic. The oolitic bauxite reservoirs in the study area generally have obvious gas content, but the continuity of the planar distribution of the bauxite reservoirs is poor, providing a scientific basis for studying bauxite reservoirs and improving the exploratory effects of bauxite gas reservoirs.
Read full abstract