In an effort to understand mammalian olfactory processing, we have been describing the responses to systematically different odorants in the glomerular layer of the main olfactory bulb of rats. To understand the processing of pure hydrocarbon structures in this system, we used the [(14)C]2-deoxyglucose method to determine glomerular responses to a homologous series of alkanes (from six to 16 carbons) that are straight-chained hydrocarbons without functional groups. We found two rostral regions of activity evoked by these odorants, one lateral and one medial, that were observed to shift ventrally with increasing alkane carbon chain length. Furthermore, we successfully predicted that the longest alkanes with carbon chain length greater than our previous odorant selections would stimulate extremely ventral glomerular regions where no activation had been observed with the hundreds of odorants that we had previously studied. Overlaps in response profiles were observed in the patterns evoked by alkanes and by other aliphatic odorants of corresponding carbon chain length despite possessing different oxygen-containing functional groups, which demonstrated that hydrocarbon chains could serve as molecular features in the combinatorial coding of odorant information. We found a close and predictable relationship among the molecular properties of odorants, their induced neural activity, and their perceptual similarities.