The Ashanti Belt in Ghana hosts numerous multi-million ounce gold deposits and is one of the most richly gold endowed Paleoproterozoic belts of the West African Craton. This work shows that the Wassa mineralized intrusion is part of the Sefwi Group. This unit at Wassa is strongly magnetic and show a distinctly high response in regional magnetic data sets compared to other units of equivalent age within the belt. The unit is inferred to be a lateral extension of an exposed fragment of what defines the substrate to the Tarkwa Basin sediments.The Wassa deposit, located in the eastern limb of the belt, is hosted within mafic to intermediate volcanic flows that are interbedded with minor horizons of volcaniclastics, clastic sediments. The clastic sediments include wackes and magnetite rich sedimentary layers, presumably derived from banded iron formations. The previously described sequence is intruded by syn-volcanic mafic intrusives and felsic porphyries rocks that are all part of the Birimian stratigraphy. Two new key SHRIMP II U–Pb ages were determined as part of this study: a new age of 2191±6Ma was determined on magmatic zircon grains of the Wassa porphyry host rock, which now represents the oldest known felsic intrusion hosting gold mineralization in the Ashanti Belt region.The Benso gold deposit system, which is located in the eastern limb of the Ashanti Belt approximately 38km southwest of Wassa is hosted within a series of volcanic units intruded by mafic to intermediate units. A SHRIMP II U–Pb age of 2157±5Ma was determined from magmatic zircons obtained from a granodiorite of the G-Zone of the Benso deposit. This granodiorite is the main host rock for gold mineralization and thus the age provides an upper constraint for mineral emplacement.The newly determined ages provide an upper constraint for the gold mineralization within this region of the Ashanti Belt. They also support recent structural studies that have interpreted that the Wassa mineralization is related to the Eoeburnean period, defined to have occurred between 2191 and 2158Ma (D1 event) prior to the main phase of gold mineralization. This new U–Pb age on the host rock provides an upper age limit to the Wassa mineralization of ca. 2191Ma and is compatible with the proposed Eoeburnean early mineralization model for the Wassa deposit. The age of the intrusion along with the location of the deposit in the Sefwi Group give a unique characteristic that distinguishes Wassa from the other gold deposits along the Ashanti belt which are believed to have been the result of a mineralizing event between ca. 2090 and 2070Ma.