Rat and mouse hypothalami from postnatal animals containing highly differentiated neurones survive very well in long-term (>15 days in vitro, DIV) stationary organotypic cultures. Magnocellular oxytocin (OT) and vasopressin (VP) neurones are present in identifiable paraventricular (PVN), supraoptic (SON) and accessory (ACC) nuclei in these cultures. After 15 DIV in standard medium immunocytochemistry revealed 427 +/- 63 OT cells and 217 +/- 27 VP cells per cultured rat hypothalamus, and 380 +/- 72 OT cells and 622 +/- 91 VP cells per cultured mouse hypothalamus. Following a 7-day adaptation period in standard culture medium containing serum, the rat slice-explants survived very well after subsequent transfer to defined, serum- free media (SFM) for an additional 8 days. The number of OT cells surviving in SFM was 612 +/- 147 OT cells per cultured rat hypothalamus. Only 0.5% of the magnocellular OT and VP neurones in the cultures appeared to express both peptides. Experiments on c-fos gene expression in these cultures showed that while only 12% of the magnocellular OT and VP neurones contained barely detectable Fos protein in their nuclei under control conditions, potassium depolarization of these cultures for 3 h produced intense c-fos expression in 87-91% of these cells. Thus, magnocellular neurones in these cultures are sufficiently stable and responsive to permit long-term physiological and gene expression studies to be done under defined media conditions.