Over the last two decades, thin film solar cell technology has made notable progress, presenting a competitive alternative to silicon-based solar counterparts. CIGS (CuIn1−xGaxSe2) solar cells, leveraging the tunable optoelectronic properties of the CIGS absorber layer, currently stand out with the highest power conversion efficiency among second-generation solar cells. Various deposition techniques, such as co-evaporation using Cu, In, Ga, and Se elemental sources, the sequential selenization/sulfidation of sputtered metallic precursors (Cu, In, and Ga), or non-vacuum methods involving the application of specialized inks onto a substrate followed by annealing, can be employed to form CIGS films as light absorbers. While co-evaporation demonstrates exceptional qualities in CIGS thin film production, challenges persist in controlling composition and scaling up the technology. On the other hand, magnetron sputtering techniques show promise in addressing these issues, with ongoing research emphasizing the adoption of simplified and safe manufacturing processes while maintaining high-quality CIGS film production. This review delves into the evolution of CIGS thin films for solar applications, specifically examining their development through physical vapor deposition methods including thermal evaporation and magnetron sputtering. The first section elucidates the structure and characteristics of CIGS-based solar cells, followed by an exploration of the challenges associated with employing solution-based deposition techniques for CIGS fabrication. The second part of this review focuses on the intricacies of controlling the properties of CIGS-absorbing materials deposited via various processes and the subsequent impact on energy conversion performance. This analysis extends to a detailed examination of the deposition processes involved in co-evaporation and magnetron sputtering, encompassing one-stage, two-stage, three-stage, one-step, and two-step methodologies. At the end, this review discusses the prospective next-generation strategies aimed at improving the performance of CIGS-based solar cells. This paper provides an overview of the present research state of CIGS solar cells, with an emphasis on deposition techniques, allowing for a better understanding of the relationship between CIGS thin film properties and solar cell efficiency. Thus, a roadmap for selecting the most appropriate deposition technique is created. By analyzing existing research, this review can assist researchers in this field in identifying gaps, which can then be used as inspiration for future research.