It is shown that the dynamics of the plasmapause, the plasmasphere plasma tails, the plasma sheet and the magnetosheath boundaries of the geomagnetosphere may be investigated by means of the geostationary version of the differential phase method, by which a signal transmitted from a sounding station (a geostationary satellite) and received by a response station on the Earth may be transformed, allowing the sign of the frequency shift and of the phase lag to be changed. Information on the location, the motion of the magnetospheric plasma discontinuities and the concentration drop at their boundaries may be obtained from measurements carried out on board the geostationary satellite of the phase difference of the sounding and response signals ΔΦ, the time of its increase Δt and the phase difference change rate (fast beating frequency Δƒ = ΔΦ 2π Δt ) . The establishment of communication between appropriately spaced ground stations and a satellite with a quasi-polar orbit allows the midlatitude plasmapause dynamics, and those of the ionosphere trough, polar cusp boundaries and of polar cap inhomogeneities to be studied. Equipment with a stability of 10 −11–10 −12 is needed for the most dynamical events (for ΔΦ= 10 −4 tens of rad. and for Δƒ= 10 −5 tens of Hz) occurring in the radio path during storms.