In this work, we present the detailed results of magnetic, structural, and magnetocaloric measurements in Ni-Mn-In-based Heusler alloys, namely, Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">51</sub> Mn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">32.8</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">16.2</sub> , Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50.2</sub> Mn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">33.6</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">16.2</sub> , and Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">51</sub> Mn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">33.4</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15.6</sub> . The characteristics of magnetostructural coupling play an important role in the magnetic field-driven behavior of these alloys. A small variation in the stoichiometry composition broadens the magnetic entropy change curve and shifts the critical temperatures by as much as 48 K. The effect of cobalt doping on the magnetic, structural, and magnetocaloric properties in these multifunctional alloys is investigated through characterizing Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">50</sub> Co <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Mn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">35</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sub> and Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">45</sub> Co <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> Mn <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">37</sub> In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sub> samples. Cobalt doping affects the martensitic and magnetic transformation temperatures and enhances the ferromagnetic properties of the parent austenitic phase. Therefore, the magnetization change accompanying the martensitic transformation is significantly improved, resulting in a large magnetic entropy change of 21.6 J kg <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> K <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> at 1.5 T. Additionally, Co doping broadens the operating temperature window to 21 K around room temperature. Consequently, a significant effective refrigeration capacity of 254 J kg <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> for 1.5 T is obtained which is comparable or even superior to that of the high-performance, though expensive, rare-earth-based magnetocaloric refrigerants. The high performance, low cost, nontoxicity, and tunability make these alloys of great interest and promising prospect for an affordable magnetic refrigeration system.
Read full abstract