With increasing atmospheric pollution and health issues associated with size of the particulate matter, it has become important to look for techniques that may improve the monitoring resolution. Magnetic bio-monitoring of particulate matter has been used in recent years in some countries as an approach for better spatial resolution that provides proxy indicators for the measurements over large areas. Delhi, which is one of the most polluted cities of not just India, but the whole world, is still probing to understand the possible sources. The present magnetic biomonitoring study was therefore, carried across different land use areas in some air pollution hotspots of Delhi, using common roadside tree species Morus alba, Ficus religiosa, Ficus virens and Ficus benghalensis to understand the magnitude and nature of the particulate pollution, and possible sources by studying magnetic properties (Magnetic susceptibility, Frequency-dependent susceptibility, S-ratio, and SIRM) of the dust deposited on leaves. Mass specific magnetic susceptibility (10−8 m3 kg−1) values were found to follow the order: Traffic intersection area (25.6–66.5) > Industrial area (25.4–41.3) > Residential area (13.2–30.1) > Institutional area serving as control (2.7–6.6). High magnetic susceptibility values indicated particulates with ferrimagnetic grains of anthropogenic or technogenic origin. Frequency-dependent Susceptibility indicated dominance of coarse multidomain (MD) and Pseudo Single Domain (PSD) +MD grains in industrial area and major traffic intersection. Average S ratio across all study sites ranged from 0.92 to 0.99 indicating presence of soft magnetic mineral with low coercivity. High SIRM values (10−5Am2 kg−1) from 58.1 to 862.3 suggested prevalence of magnetite dominating atmospheric particulates particularly in traffic intersection and industrial area, and to some extent in residential area. Morus alba and Ficus religiosa were found more suitable bio-monitors and the technique provided useful information on size, mineralogy and possible source of the particulates.
Read full abstract