The benefits of intraoperative magnetic resonance (MR) imaging for diagnostic and therapeutic measures are as follows: 1) intraoperative update of data sets for navigational systems, 2) intraoperative resection control of brain tumors, and 3) frameless and frame-based on-line MR-guided interventions. The concept of an intraoperative MR scanner in the sterile environment of operating theater is presented, and its advantages, disadvantages, and limitations are discussed. A 0.2-tesla magnet (Magnetom Open; Siemens AG, Erlangen, Germany) inside a radiofrequency cabin with a radiofrequency-shielded sliding door was installed adjacent to one of the operating theaters. A specially designed patient transport system carried the patient in a fixed position on an air cushion to the scanner and back to the surgeon. In a series of 27 patients, intraoperative resection control was performed in 13 cases, with intraoperative reregistration in 4 cases. Biopsies, cyst aspirations, and catheter placements (mainly frameless) were performed under direct MR visualization with fast image sequences. The MR-compatible equipment and the patient transport system are safe and reliable. Intraoperative MR imaging is a safe and successful tool for surgical resection control and is clearly superior to computed tomography. Intraoperative acquisition of data sets eliminates the problem of brain shift in conventional navigational systems. Finally, on-line MR-guided interventional procedures can be performed easily with this setting. As with all MR systems, individual testing with phantoms, application of correction programs, and determination of the optimal amount of contrast media are absolute prerequisites to guarantee patient safety and surgical success.
Read full abstract