A magnetic metal–organic frameworks nanocomposite (FCMCZA) was prepared by solvothermal and in situ growth method for efficient antifouling and uranium enrichment. A series of characterization tests were carried out by SEM, XRD, XPS, FTIR and N2 adsorption–desorption analyses. The FCMCZA exhibited the distinct core–shell structure with high specific surface areas (793.86 m2/g) and abundant functional groups. The saturated magnetization and algae death rate of FCMCZA reached 33.5 emu/g and 41 %, respectively. The maximum adsorption capacity of FCMCZA was 238.66 mg/g at pH 8.0, calculated from Langmuir model. Importantly, the removal capacity of FCMCZA remained 87.29 mg/g after four cycles. The high removal rate (62.9 %) and uranium uptake (11.7 μg/g) in actual seawater further proved its application potentiality.
Read full abstract