The magnetic gear system works with magnetic forces obtained with the help of permanent magnets and has a structure that can be an alternative to classical gear systems. In order to transmit torque between the input and output shaft, unlike conventional gears, there is a transmission without mechanical contact in the magnetic gear system. Therefore, friction is eliminated. Elimination of friction means that magnetic gear systems operate at much higher efficiency compared to conventional gearbox systems. Since the movement and torque transmission in magnetic gear systems occur without contact, it never requires lubrication and problems arising from lubrication do not occur. In conventional mechanical gearbox systems, the conversion rate is determined by the number of teeth used. Similarly in magnetic gear systems, the number of permanent magnets used determines the conversion rate. In this study, a magnetic gear system with a coaxial structure was designed and its electromagnetic analysis was made with the finite element method. Axial torque values at certain speeds in the input shaft and output shaft were obtained as a result of finite element analysis depending on time.