Context.Solar flares are sudden and violent releases of magnetic energy in the solar atmosphere that can be divided into two classes: eruptive flares, where plasma is ejected from the solar atmosphere resulting in a coronal mass ejection (CME), and confined flares, where no CME is associated with the flare.Aims.We present a case study showing the evolution of key topological structures, such as spines and fans, which may determine the eruptive versus non-eruptive behavior of the series of eruptive flares followed by confined flares, which all originate from the same site.Methods.To study the connectivity of the different flux domains and their evolution, we compute a potential magnetic field model of the active region. Quasi-separatrix layers are retrieved from the magnetic field extrapolation.Results.The change in behavior of the flares from one day to the next – from eruptive to confined – can be attributed to the change in orientation of the magnetic field below the fan with respect to the orientation of the overlaying spine rather than an overall change in the stability of the large-scale field.Conclusions.Flares tend to be more confined when the field that supports the filament and the overlying field gradually becomes less anti-parallel as a direct result of changes in the photospheric flux distribution, being themselves driven by continuous shearing motions of the different magnetic flux concentrations.
Read full abstract