This paper investigates the influence of magneto-tangent hyperbolic nanofluid on the flow of a tri-hybrid nanoliquid consisting of [Formula: see text], and [Formula: see text] particles suspended in [Formula: see text]. The entropy production is encountered in this analysis. The fluid flows over a stretch sheet is considered. In addition, the energy equation also assumes the existence of a uniform heat source or sink and thermal radiation. Furthermore, the concentration equation emphasizes the chemical reaction. The current proposed model yields a set of nonlinear governing equations. The modeled formulation is transformed into a dimensionless system through the application of a suitable alteration. The complex nonlinear equation system was solved using the bvp4c through numerical methods. The main motive of this exploration is to emphasize the rate of heat and mass transfer in a flow of [Formula: see text], and [Formula: see text]-based hybrid nanofluid across a stretch sheet. The graphical study illustrates that Weissenberg number and magnetic field enhancement result in decreasing the velocity. But thermal layer, entropy production, and Bejan number are enhanced with larger values of Weissenberg number and magnetic field. This study focuses on different profiles with various flow parameters. Furthermore, we have compared the tri-hybrid nanofluid with the hybrid and mono nanofluid in all the figures and tabular format. Additionally, we have compared tri-hybrid, hybrid, and mono nanofluid using graphs for velocity, temperature, concentration, entropy production, and Bejan number.
Read full abstract