Abstract In this paper, we investigate the ground states for the following fractional Choquard equation with magnetic fields and critical exponents: ( - Δ ) A s u + V ( x ) u = λ f ( x , u ) + [ | x | - α ∗ | u | 2 α , s * ] | u | 2 α , s * - 2 u in ℝ N , (-\Delta)_{A}^{s}u+V(x)u=\lambda f(x,u)+[\lvert x\rvert^{-\alpha}\ast\lvert u% \rvert^{2^{*}_{\alpha,s}}]\lvert u\rvert^{2^{*}_{\alpha,s}-2}u\quad\text{in }% \mathbb{R}^{N}, where λ > 0 {\lambda>0} , α ∈ ( 0 , 2 s ) {\alpha\in(0,2s)} , N > 2 s {N>2s} , u : ℝ N → ℂ {u:\mathbb{R}^{N}\rightarrow\mathbb{C}} is a complex-valued function, 2 α , s * = ( 2 N - α ) / ( N - 2 s ) {2^{*}_{\alpha,s}=(2N-\alpha)/(N-2s)} is the fractional Hardy–Littlewood–Sobolev critical exponent, V ∈ ( ℝ N , ℝ ) {V\in(\mathbb{R}^{N},\mathbb{R})} is an electric potential, V and f are asymptotically periodic in x, A ∈ ( ℝ N , ℝ N ) {A\in(\mathbb{R}^{N},\mathbb{R}^{N})} is a magnetic potential, and ( - Δ ) A s {(-\Delta)^{s}_{A}} is a fractional magnetic Laplacian operator with s ∈ ( 0 , 1 ) {s\in(0,1)} . We prove that the equation has a ground state solution for large λ by using the Nehari method and the concentration-compactness principle.
Read full abstract