In order to realize the unsupervised segmentation of subtle defect images on the surface of small magnetic rings and improve the segmentation accuracy and computational efficiency, here, an adaptive threshold segmentation method is proposed based on the improved multi-scale and multi-directional 2D-Gabor filter bank. Firstly, the improved multi-scale and multi-directional 2D-Gabor filter bank was used to filter and reduce the noise on the defect image, suppress the noise pollution inside the target area and the background area, and enhance the difference between the magnetic ring defect and the background. Secondly, this study analyzed the grayscale statistical characteristics of the processed image; the segmentation threshold was constructed according to the gray statistical law of the image; and the adaptive segmentation of subtle defect images on the surface of small magnetic rings was realized. Finally, a classifier based on a BP neural network is designed to classify the scar images and crack images determined by different threshold segmentation methods. The classification accuracies of the iterative method, the OTSU method, the maximum entropy method, and the adaptive threshold segmentation method are, respectively, 85%, 87.5%, 95%, and 97.5%. The adaptive threshold segmentation method proposed in this paper has the highest classification accuracy. Through verification and comparison, the proposed algorithm can segment defects quickly and accurately and suppress noise interference effectively. It is better than other traditional image threshold segmentation methods, validated by both segmentation accuracy and computational efficiency. At the same time, the real-time performance of our algorithm was performed on the advanced SEED-DVS8168 platform.