In the present study, the simplex lattice mixture design method was adopted to design the artificial biomass with different ratios of three major components (cellulose, hemicellulose, lignin). The methane yield from the co-digestion of the artificial/ natural biomass (corn stover, wheat stover, rice straw, and peanut stalk) samples with the mixed sludge at the mixture ratio of 1:1 based on total solid (TS) content was recorded for 50 days. The original mathematical prediction models for estimating the cumulative methane production, maximum methane production rate, and lag phase time were established based on the experimental results from the co-digestion of artificial biomass with sludge. To investigate the influence of the structural features of biomass and interactions among the components of biomass which contributing to the inhibition of methane production, the macroscopic factor (MF) was proposed. The mathematical models which revealed the relationship between MF and the methane production parameters were developed by the combination of the prediction results from the original mathematical prediction model and experimental results from the co-digestion of natural biomass with sludge. Modification of the original mathematical prediction models was carried out by considering MF. After modification, the relative error (RE) and root mean square error (RMSE) of the prediction model for cumulative methane production were declined from 19.00 to 30.18% and 42.38 mL/g VSadded to that of - 1.93~7.14% and 4.36 mL/g VSadded, respectively.
Read full abstract