The aim of this work was preparation of the macroporous titania coatings with the use of the sol–gel process and poly(methylmetacrylate) beads as a template. The effectiveness of the Langmuir–Blodgett (LB) and dip-coating (DC) methods in deposition of polymer beads on the silicon wafers was compared. Resulted polymer layers and final porous titania coatings were analyzed with the use of the atomic force microscope. It was found, that application of the LB is possible only when arachidic acid is present in the subphase. It should be highlighted, that the application of the LB method is the novelty between the methods of the polymer beads arrangement having the diameter of 200–300 nm. Main factors which influence the structure and the arrangement of polymer templates were the concentration of the polymer suspension and the rate of the substrate immersion/withdrawal from the suspension. We established, that the optimal concentrations for preparation of polymer templates, exhibiting good arrangement of individual beads, were 0.5 and 6 % for LB and DC methods, respectively. The size of pores of the obtained macroporous titania (200–330 nm) corresponds well with the size of the polymer beads used as the template (200–235 nm).