The use of coatings on cutting tools offers several advantages from the point of view of wear resistance. A recent technique with great coating deposition potential is PVD HiPIMS. TiAlN-based coatings have good resistance to oxidation due to the oxide layer that is formed on their surface. However, by adding doping elements such as Vanadium, it is expected that the wear resistance will be improved, as well as its adhesion to the substrate surface. INCONEL® 718 is a nickel superalloy with superior mechanical properties, which makes it a difficult-to-machine material. Milling, due to its flexibility, is the most suitable technique for machining this alloy. Based on this, in this work, the influence of milling parameters, such as cutting speed (Vc), feed per tooth (fz), and cutting length (Lcut), on the surface integrity and wear resistance of TiAlVN-coated tools in the milling of INCONEL® 718 was evaluated. The cutting length has a great influence on the process, with the main wear mechanisms being material adhesion, abrasion, and coating delamination. Furthermore, it was noted that delamination occurred due to low adhesion of the film to the substrate, as well as low resistance to crack propagation. It was also observed that using a higher cutting speed resulted in increased wear. Moreover, in general, by increasing the milling parameters, machined surface roughness also increased.
Read full abstract