The gradient technique is a promising tool with theoretical foundations based on the fundamental properties of MHD turbulence and turbulent reconnection. Its various incarnations use spectroscopic, synchrotron, and intensity data to trace the magnetic field and measure the media magnetization in terms of Alfvén Mach number. We provide an analytical theory of gradient measurements and quantify the effects of averaging gradients along the line of sight and over the plane of the sky. We derive analytical expressions that relate the properties of gradient distribution with the Alfvén Mach number M A. We show that these measurements can be combined with measures of sonic Mach number or line broadening to obtain the magnetic field strength. The corresponding technique has advantages to the Davis–Chandrasekhar–Fermi way of obtaining the magnetic field strength.