The high mutation rate of HIV-1 (human immunodeficiency virus-1) is a major obstacle to developing an effective vaccine. The mutation of ELDKWA-(aa669-674) to ELDEWA-epitope on HIV-1 gp41 caused the immune escape from neutralization by potent anti-HIV-1 human monoclonal antibody (mAb) 2F5. In this study, we suggested and evaluated a multi-epitope vaccine as a new strategy to develop HIV-1 vaccines. A glutathione S-transferase (GST) fusion protein (GST-K8E8) containing 8 copies of ELDKWA-and mutated ELDEWA-epitopes was constructed and used to immunize mice or rabbits. Analysis of the antisera (rAS3) induced by GST-K8E8 suggested that multi-epitope vaccine immunogen could raise antibodies in mice and rabbits against either the original ELDKWA-epitope or the mutated ELDEWA-epitope that resulted in immune escape. Briefly, ELDKWA-epitope-specific antibodies, directly purified from rAS3 by ELDKWA-epitope-peptide affinity chromatography, recognized either original gp41 protein (ELDKWA, rgp41K) or mutated gp41 (ELDEWA, rgp41E) in immunoblotting assay; in contrast, the existing ELDKWA-epitope antibodies recognized only rgp41K but not rgp41E, which were purified by ELDKWA-epitope-peptide affinity chromatography from rAS3 that were firstly completely pre-absorbed by ELDEWA-epitope-peptide affinity beads. And the same results were also observed when detecting the ELDEWA-epitope-specific antibodies in rAS3 by a means similar to the above. All the data presented here demonstrated that a high density multi-epitope vaccine could be an interesting strategy against HIV-1 mutation.
Read full abstract