A simple, low cost sensor was developed for the voltammetric determination of hydrogen peroxide in mouthwash and dental whitening gel based on multi-walled carbon nanotubes incorporated with hemin. The sensor showed electrocatalytic activity toward the reduction of hydrogen peroxide in 0.05 mol L−1 Tris-HCl buffer solution (pH 7.0) using cyclic voltammetry. The optimum composition of paste was 20:10:70% (m/m/m) (multi-walled carbon nanotubes:hemin:mineral oil). A linear plot of the square root of scan rate vs. cathodic peak current showed that reduction of hydrogen peroxide is diffusion controlled. Using linear sweep voltammetry, the analytical curve ranged from 0.2 up to 1.4 mmol L−1 (r = 0.9996) with a sensitivity of 3.62 × 10−2 mA mol−1 L. The limits of detection and quantification were found to be 12.5 µmol L−1 and 41.7 µmol L−1, respectively. The developed method was applied for hydrogen peroxide determination in dental formulations. The results were compared with a volumetric method as a reference technique. No significant differences at the 95% level (paired student t test) were observed, thus demonstrating the accuracy of the sensor for the analysis of real samples.
Read full abstract