Tools from molecular biology, in combination with in vivo optical imaging techniques, provide new mechanisms to noninvasively observe brain processing. Current approaches primarily probe cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell signaling. Here we introduce CNiFERs, cell-based neurotransmitter fluorescent engineered reporters, to address this challenge and monitor in situ neurotransmitter receptor activation. CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, make use of the Gq protein-coupled receptor cascade to transform receptor activity into a rise in cytosolic [Ca2+], and report [Ca2+] with a genetically encoded fluorescent Ca2+ sensor. The initial realization of CNiFERs detects acetylcholine release via activation of M1 muscarinic receptors. Chronic implantation of M1-CNiFERs in frontal cortex of the adult rat is used to elucidate the muscarinic action of the atypical neuroleptics clozapine and olanzapine. We show that these drugs potently inhibit in situ muscarinic receptor activity.
Read full abstract