Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.Mouse BV2 microglial cells and male mice were treated with beta-amyloid (Aβ) (1-42) to simulate the AD environment. Microglia ferroptosis was measured by detecting levels of ferroptosis-related proteins (SLC7A11, GPX4, FTL1, and FTH1), metabolic markers (ROS, MDA, GSH, SOD), and observing mitochondrial morphological changes. Microglial polarization was evaluated by measuring levels of inflammatory markers and surface markers. The impact of ghrelin on Aβ1-42-exposed microglia was assessed by coupling with the ferroptosis activator Erastin. Cognitive impairment in AD mice was evaluated through behavioral tests. Tissue staining was applied to determine neuronal damage.In Aβ1-42-exposed microglia, ghrelin upregulated the protein expression of SLC7A11, GPX4, FTL1 and FTH1, reduced ROS and MDA levels, and elevated GSH and SOD levels through the BMP6/SMAD1 pathway. Ghrelin alleviated mitochondrial structural damage. Additionally, ghrelin reduced levels of pro-inflammatory factors and CD86, while increasing levels of anti-inflammatory factors and CD206. Erastin reversed the effects of ghrelin on ferroptosis and phenotypic polarization in Aβ1-42-exposed microglia. In AD mice, ghrelin ameliorated abnormal behavior, neuroinflammation, and plaque deposition. Ghrelin attenuated iNOS/IBA1-positive expression and enhanced Arg-1/IBA1-positive expression in the hippocampus. Ghrelin induces microglial M2 polarization by inhibiting microglia ferroptosis, thereby alleviating neuroinflammation. Our results indicate that ghrelin may serve as a promising potential agent for treating cognitive impairment in AD.
Read full abstract