Previous reports showed that NOS3 is regulated by acetylation through transcriptional mechanisms via histone acetylation or through direct lysine acetylation. Histone deacetylase (HDAC) enzymes and histone acetyltransferases (HATs) modulate acetylation processes. Recent work by our lab, demonstrated increased expression of aortic HDAC1 and HDAC6 while HATs were unchanged in a mouse model of early life stress with endothelial dysfunction. These data suggest a negative correlation between endothelial dysfunction and HDAC expression. The purpose of this study was to test the hypothesis that HDAC1 and 6 regulate endothelial NO production and/or NOS3 acetylation. Initial immunoprecipitation studies with anti-acetyl lysine and anti-NOS3 antibodies demonstrated that NOS3 is basally acetylated in primary bovine aortic endothelial cells (BAECs). Treatment with the HDAC inhibitor, trichostatin A (500 nM) for 1 hr, significantly increased NOS3 acetylation. BAECs were transfected with HDAC1, HDAC6, vector expression plasmids, or untransfected, with nitrite production determined by HPLC and NOS3 acetylation and expression probed by immunoprecipitation and Western blotting. Untransfected and vector transfected control BAECs had similar NO production (357 ± 10 and 344 ± 30 pmol/mg pr/h, respectively, N=6) as well as NOS3 acetylation (7.8 ± 1.6 and 6.8 ±0.3 AU, N=3). HDAC6 transfected BAECs had similar NO production to the control BAECs (272 ± 93 pmol/mg pr/h, N=3) with an increase in NOS3 acetylation (17.4 ± 1.7 AU, N=3). In contrast, HDAC1 overexpression significantly decreased NO production (89 ± 50 pmol/mg pr/h, P< 0.05, N=3) and reduced NOS3 acetylation (3.8 ± 0.5 A.U, N=3), P <0.05). Control transfections, HDAC6, and HDAC1 transfected BAECS all had similar NOS3 expression (10.14 ± 1.8; 9.8 ±1.6; 8.9 ± 1.5; 10.6 ± 1.0 AU, respectively, N=3). Thus, we conclude that HDAC1 regulates NO production via direct lysine deacetylation of NOS3.
Read full abstract