When implanted in animals, enzyme-containing battery electrodes, biofuel cell electrodes, and biosensors are often damaged by components of the biological environment. An O2 cathode, superior to the classical platinum cathode, which would be implanted, as part of a caseless physiological pH miniature Zn-O2 battery or as part of a caseless and membraneless miniature glucose-O2 biofuel cell, is rapidly damaged by serum urate at its operating potential. The cathode is made by electrically connecting, or wiring, reaction centers of bilirubin oxidase to carbon with an electron-conducting redox hydrogel. In the physiological pH 7.3 electrolyte battery or biofuel cell, the O2 cathode should operate at, or positive of, 0.3 V (Ag/AgCl), where the urate anion, a common serum component, is electrooxidized. Because an unidentified urate electrooxidation intermediate, formed in the presence of O2, damages the wired bilirubin oxidase electrocatalyst, urate must be excluded from the cathode. Unlike O2, which permeates through both the lipid and the aqueous interconnected networks of cubic-phase lyotropic liquid crystals, urate permeates only through their continuous three-dimensional aqueous channel networks. The aqueous channels have well-defined diameters of approximately 5 nm in the monoolein/water cubic-phase liquid crystal. Through tailoring the wall charge of the aqueous channels, the anion/cation permeability ratio can be modulated. Thus, doping the monoolein of the monoolein/water liquid crystal with 1,2-dioleoyl-sn-glycero-3-phosphate makes the aqueous channel walls anionic and reduces the urate permeation in the liquid crystal. As a result, the ratio of the urate electrooxidation current to the O2 electroreduction current is reduced from 1:3 to 1:100 for 5-mm O2 cathodes rotating at 1000 rpm. Doping with 1,2-dioleoyl-sn-glycero-3-phosphate also increases the shear strength of the cubic-phase monoolein/water lyotropic liquid crystal. While the undoped liquid crystal is promptly damaged at the 0.1 N m-2 average shear stress generated by rotating the 5-mm-diameter disk cathode at 1000 rpm in a physiological aqueous solution, the 10 mol % 1,2-dioleoyl-sn-glycero-3-phosphate-doped film remains intact. The mechanical strengthening of the lyotropic liquid crystal by the two-tailed 1,2-dioleoyl-sn-glycero-3-phosphate is attributed to cross-linking hydrophobic bonds (i.e., bonds resulting of the increase in entropy upon the freeing of the translation and rotation of multiple water molecules), which is analogous to the strengthening of polymer-based plastic materials by cross-linking through covalent bonds.