The possible role of acetate in the genesis of exercise hyperemia was studied in five series of dogs. Intraarterial infusion of an isomotic solution of sodium acetate at 0.76 ml/min in the dog forelimb decreased the resistance to flow through skeletal muscle by 48%, primarily by decreasing resistance to flow through small vessels. Skin lymph flow and lymph protein concentration were unaffected. The hindlimb of the conscious dog took up acetate at rest (A-V difference, + 58.3 +/- 19.6 nmoles/ml) and put out acetate during treadmill exercise (A-V difference, -105.6 +/- 20.12 nmoles/ml); femoral venous blood acetate concentration increased by 145 nmoles/ml (control 195 nmoles/ml). In the gracilis muscle of the anesthetized dog, simulated exercise at 0.5, 1.0 or 2.0 Hz increased acetate tissue content (72, 248 and 442 nmoles/g, respectively), output (18,899, and 1,830 nmoles/100 g/min, respectively) and venous concentration (82, 49 and 39 nmoles/ml, respectively) and changes in tissue acetate content correlated with changes in vascular resistance r = 0.75, P less than 0.001. Intraarterial infusion of an isosmotic solution of sodium acetate in the quiescent gracilis muscle perfused at constant flow produced a significant (6%) decrease in resistance when arterial blood acetate was increased by a calculated 96 nmoles/ml. These studies suggest that acetate might be included among those metabolites that contribute to exercise hyperemia.U