We show that unusual Balmer emission line profiles of the quasar OX 169, frequently described as either self-absorbed or double peaked, are actually neither. The effect is an illusion resulting from two coincidences. First, the forbidden lines are quite strong and broad. Consequently, the [N II]6583 line and the associated narrow-line component of H-alpha present the appearance of twin H-alpha peaks. Second, the redshift of 0.2110 brings H-beta into coincidence with Na I D at zero redshift, and ISM absorption in Na I D divides the H-beta emission line. In spectra obtained over the past decade, we see no substantial change in the character of the line profiles, and no indication of intrinsic double-peaked structure. The H-gamma, Mg II, and Ly-alpha emission lines are single peaked, and all of the emission-line redshifts are consistent once they are correctly attributed to their permitted and forbidden-line identifications. A systematic shift of up to 700 km/s between broad and narrow lines is seen, but such differences are common, and could be due to gravitational and transverse redshift in a low-inclination disk. Stockton & Farnham (1991) had called attention to an apparent tidal tail in the host galaxy of OX 169, and speculated that a recent merger had supplied the nucleus with a coalescing pair of black holes which was now revealing its existence in the form of two physically distinct broad-line regions. Although there is no longer any evidence for two broad emission-line regions in OX 169, binary black holes should form frequently in galaxy mergers, and it is still worthwhile to monitor the radial velocities of emission lines which could supply evidence of their existence in certain objects.
Read full abstract