Niche models applied in the context of future climate change predict that as regional temperatures increase, the distribution of tropical species will shift poleward. While range expansions have been documented for a number of species, there is limited information on the ecological impacts of shifts on native species. Recently, abundances of tropically-associated gray snapper (Lutjanus griseus) and lane snapper (Lutjanus synagris) have increased in seagrass nurseries in the northern Gulf of Mexico (GOM), concurrent with regional increases in sea surface temperature. We investigated effects of increased abundances of these species on abundance and growth of pinfish (Lagodon rhomboides), the dominant native species. Because juvenile pinfish and snappers share common prey, predators, and habitat, the high degree of niche overlap suggests an equally high potential for competition. We used a multiple before–after control impact design to determine whether increased snapper abundances significantly affected abundance or growth of pinfish. Trawl surveys at six locations in the northern GOM in summer and fall 2010 were used to calculate pinfish and snapper abundances. We identified three locations with high snapper abundances and three locations with no snapper and compared pinfish abundance and otolith-determined growth rates in these locations before and after snapper recruitment. Paired t tests and two-way analysis of variance revealed no significant differences in pinfish abundance or growth in the presence of snappers compared to locations and seasons without snappers. We conclude that range expansions of tropically associated snappers have had no significant effect on abundance or growth of native pinfish in northern GOM seagrass habitats.