The nuclear receptor 4A (NR4A) members play important roles in cellular proliferation, differentiation and apoptosis. The current study first evaluate the expression of ovarian NR4A1 during different luteal stages in rats. Immature rats aged 28 days were treated with sequential Pregnant mare serum gonadotropin (PMSG) (D -2) / human chorionic gonadotropin (hCG) (D 0) to induce pseudopregnancy. Serum progesterone (P4) and ovarian expression of NR4A1 were detected by RIA and WB, respectively, at follicle stage (D 0), early (D 2), middle (D 7) and late (D 14 and D 20) luteal stages. To confirm the role of NR4A1 during the luteal regression, rats were treated with prostaglandin F2α analog (PGF) for 0–8 h on D 7 to detect the expressions of NR4A1 and NR4A2. RIA result showed that serum P4 reached highest level on D 7 and then declined. WB results showed that there were two types of NR4A1 (NR4A1-L and NR4A1-S) expressed in the ovary. The ovarian NR4A1-L decreased at the late luteal stage (D 20). However, the NR4A1-S increased at the late luteal stage (D 14). After PGF treatment on D 7, the expression of NR4A1-S increased which peaked at 0.5–1 h and then declined; while NR4A1-L expression did not change within 8 h. Real-time PCR results showed that the ovarian NR4A1 mRNA increased within 0.5 h, maintained high at 1 h and then declined. The NR4A2 mRNA expression exhibited a similar pattern to that of NR4A1 mRNA, though its abundance was not as high as NR4A1. IHC results revealed that NR4A1-L was expressed mainly in the cytoplasm of luteal steroidogenic cells, faintly expressed in the follicle theca cells, oocytes and the pericytes; while NR4A2 was primarily localized in the cytoplasm of luteal steroidogenic cells. In conclusion, all these results demonstrate that NR4A2 as well as NR4A1 might be involved in the luteal development and luteolysis in rats.
Read full abstract