To obtain insight into the development of the heterogeneous intracerebral populations of luteinizing hormone-releasing hormone (LHRH) neurons, their spatiotemporal appearance was examined at different stages in normal rat embryos, in nasal epithelial explants in vitro, and in intrauterine nasal-operated embryos. Following the appearance of nerve cell adhesion molecule in the nasal placode at embryonic day (E) 12.5, LHRH neurons, generated in the nasal placode at E13.5, penetrated the forebrain vesicle (FV) by E14.5-15.5. After E16.5, as the FV elongated to form the olfactory bulb, the migrating neurons traversed posteriorly through the interhemispheric space to penetrate the septopreoptic (S-P) area. By E18.5, LHRH neurons were detected in the preoptic-diagonal band (P-D) area as well as in the S-P region, along with some scattered extrahypothalamic LHRH neurons. To determine the source of these neurons, we separately cultured dissected parts of E12.5 nasal pit epithelium. Neuronal generation was predominantly from the medial wall epithelium (NAP), but some LHRH neurons originated in the roof epithelium. Cocultures of the NAP (E12.5) with the FV, median eminence-arcuate complex, Rathke's pouch, mesencephalon, or medulla oblongata from E14.5 embryos revealed the ability of LHRH cells to penetrate all of these tissues. Uni- or bilateral nasal destruction was conducted at E16.5 or E15.5, respectively, and examined at E18.5 and E21.5. In the operated embryos, most LHRH neurons were present in the P-D system and some in the S-P area. This finding suggests that the neurons generated before E15.5 are primarily predisposed to form the P-D system, whereas those derived afterward form the S-P system.