This study investigated the expression of lung surfactant proteins (SP-B and SP-C), and regulatory factors [forkhead box A2 (FOXA2) and nitrolyogenic FOXA2 (N-FOXA2)] in the fetal lung of rats with gestational diabetes mellitus (GDM) in order to study the mechanism of pulmonary dysplasia. The rat GDM model was established by using streptozotocin intraperitoneally in the first stage of pregnancy. There were 10 rats in the GDM group, and 10 healthy rats in normal control group without any treatment. Fetal lungs of two groups were taken at day 21 of pregnancy. Blood glucose levels of maternal rats and fetal rats were measured by Roche blood glucose meter. The histological changes in the fetal lung were observed under the light microscope in both groups. The SP-B, SP-C and FOXA2 were determined in the fetal lung of two groups immunohistochemically. The expression levels of SP-B, SP-C, total FOXA2, FOXA2 in nucleus (n-FOXA2), N-FOXA2 proteins were detected by Western blotting, and the relative expression levels of SP-B, SP-C, FOXA2 mRNA in the fetal lung of two groups were detected by RTPCR. The results showed that blood glucose levels of maternal rats and fetal rats in GDM group were higher than those in control group. The light microscope revealed fetal lung development retardation in GDM group. The expression of SP-B and SP-C in GDM group was significantly reduced as compared with control group (P<0.05). As compared with control group, the n-FOXA2 expression was significantly decreased in the fetal lung tissue, and N-FOXA2 was significantly increased in control group (P<0.05), but there was no significant changes in the total FOXA2 (P>0.05). It was concluded that GDM can cause fetal lung development and maturation disorders, and FOXA2 in fetal lung tissue decreases while nitrocellulose FOXA2 increases.