Abstract

Deuterium nuclear magnetic resonance was used to monitor lipid acyl-chain orientational order in suspensions of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) containing Ca 2+ and the lung surfactant proteins SP-A and SP-B separately and together. To distinguish between protein-lipid interactions involving the PC and PG lipid headgroups and to examine whether such interactions might influence spatial distribution of lipids within the bilayer, acyl chains on either the DPPC or the DPPG component of the mixture were deuterated. The lipid components of the resulting mixtures were thus either DPPC- d 62/DPPG (7:3) or DPPC/DPPG- d 62 (7:3), respectively. SP-A had little effect on DPPC- d 62 chain order but did narrow the temperature range over which DPPG- d 62 ordered at the liquid-crystal-to-gel transition. No segregation of lipid components was seen for temperatures above or below the transition. Near the transition, though, there was evidence that SP-A promoted preferential depletion of DPPG from liquid crystalline domains in the temperature range over which gel and liquid crystal domains coexist. SP-B lowered average chain order of both lipids both above and below the main transition. The perturbations of chain order by SP-A and SP-B together were smaller than by SP-B alone. This reduction in perturbation of the lipids by the additional presence of SP-A likely indicated a strong interaction between SP-A and SP-B. The competitive lipid-lipid, lipid-protein, and protein-protein interactions suggested by these observations presumably facilitate the reorganization of surfactant material inherent in the transformation from lamellar bodies to a functional surfactant layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.