The study aimed to validate a method for minimizing phase errors by combining full-length lung 4DCT (f4DCT) scans with shorter tumor-restricted 4DCT (s4DCT) scans. It assessed the feasibility of integrating two scans one covering the entire phantom length and the other focused on the tumor area. The study also evaluated the impact of Maximum Intensity Projection (MIP) volume and imaging dose for different slice thicknesses (2.5mm and 1.25mm) in both full-length and short target-restricted 4DCT scans. The study utilized the Quasar Programmable Respiratory Motion Phantom, simulating tumor motion with a variable lung insert. The setup included a tumor replica and a six-dot IR reflector marker on the breathing platform. The objective was to analyze volume differences in fMIP_2.5mm compared to sMIP_1.25mm within their respective 4D_MIP CT series. This involved varying breathing periods (2.5s, 3.0s, 4.0s, and 5.0s) and longitudinal tumor sizes (6mm, 8mm, and 10mm). The study also assessed exposure time and expected CTDIvol of s4D_2.5mm and s4D_1.25mm for different breathing periods (5.0s to 2.0s) in the sinusoidal wave motion of the six-dot marker on the breathing platform. Conducting two consecutive 4DCT scans is viable for patients with challenging breathing patterns or when the initial lung tumor scan is in close proximity to the tumor location, eliminating the need for an additional full-length 4DCT. The analysis involves assessing MIP volume, imaging dose (CTDIvol), and exposure time. Longitudinal tumor shifts for 6mm are [16.6-17.2] in fMIP_2.5mm and [16.8-17.5] in sMIP_1.25mm, for 8mm [17.2-18.3] in fMIP_2.5mm and [17.8-18.4] in sMIP_1.25mm, and for 10mm [19-19.9] in fMIP_2.5mm and [19.4-20] in sMIP_1.25mm (p≥ 0.005), respectively. The Quasar Programmable Respiratory Motion Phantom accurately replicated varied breathing patterns and tumor motions. Comprehensive analysis was facilitated through detailed manual segmentation of Internal Target Volumes and Internal Gross Target Volumes.
Read full abstract