The present study focused on the formulation, characterization, and evaluation of solid lipid nanoparticles (SLNs) loaded with gemcitabine (GEM) and epigallocatechin-3-gallate (EGCG) for lung cancer treatment. A 2-level, 3-factor factorial design was used to optimize various process parameters in the preparation of SLNs. The average particle size and polydispersity index (PDI) of GEM-EGCG SLNs were found to be 122.8 ± 8.02 and 0.1738 ± 0.02, respectively. Drug loading and release studies indicated a sustained release behavior for GEM-EGCG SLNs, with release kinetics confirmed by the Higuchi model. Cell viability and anticancer activities were assessed using the MTT assay, which determined an IC50 value of 12.5 μg/mL for GEM-EGCG SLNs against A549 cell lines (lung carcinoma epithelial cells). The SLNs were able to internalize into the nuclei of cells, likely due to their small particle size, and were effective in killing cancer cells. Additionally, a study of ROS production-mediated apoptosis of A549 cells was performed through FACS. GEM-EGCG SLNs were found to be stable for 3 months. In vivo studies revealed better drug distribution in the lungs and improved pharmacokinetic profile compared with pure drugs. Overall, the results suggest that combining GEM and EGCG in biocompatible SLNs has resulted in synergistic antitumor potential and improved bioavailability for both drugs, making it a promising anticancer therapeutic regimen against lung cancer.
Read full abstract