This research investigated the combined use of sewage sludge (SS) and plant growth-promoting rhizobia (PGPR) for Ridge gourd (Luffa acutangula (L.) Roxb.) cultivated under field conditions. The different treatments of SS and PGPR such as 0% (soil as control), 5% SS, 5% SS + PGPR, 10% SS, and 10% SS + PGPR were applied to assess their impacts on seedling growth, biochemical response, and yield performance of Ridge gourd. The results showed that the highest seedling emergence (92.3 ± 2.1%), fresh biomass (9.6 ± 0.3 g), growth rate (1.4 ± 0.1 g/day), seedling length (15.5 ± 0.3 cm), root length (10.4 ± 0.3 cm), total chlorophyll (3.2 ± 0.1 mg/g), crop yield (13.8 ± 0.1 kg/plant), and average crop yield per harvest (2.8 ± 0.1 kg/plant) were observed in 10% SS + PGPR treatment. The enzyme activities of superoxide dismutase (SOD; µg/g) and catalase (CAT: µg/g) were significantly lowered after PGPR inoculation in higher SS treatments. The results of principal component (PC) and Euclidian clustered distance analyses showed a positive influence of SS dose on soil nutrient availability and Ridge gourd’s growth, biochemical responses, and yield performance. Moreover, the elemental analysis showed that the bioaccumulation factor (BAF < 0.90) and health risk index (HRI < 0.40) of selected metal elements (Cd, Cr, Cu, Fe, Mn, and Zn) were within the permissible limits, indicating consumption of Ridge gourd fruits was safe. The outcomes of this study suggest the potential use of SS and PGPR for improved Ridge gourd production and contribution towards sustainable development goal (SDG) 12 on responsible consumption and production of vegetable crops.