Hepatocellular carcinoma (HCC) is the third leading cause of cancer-attributed mortality and the primary liver malignancy in the world. Echinacoside is a phenylethanoid glycoside derived from traditional Chinese medicinal herbs which possessed multiple health benefits on humans, including anti-tumor effects. This study aimed to demonstrate the function of echinacoside in HCC progression and the involvement of miR-30c-5p/FOXD1/KLF12 axis. The HepG2 cells were treated by different dose of echinacoside, miR-30c-5p mimic, miR-30c-5p inhibitor, and FOXD1 overexpression lentiviruses or siRNA individually or simultaneously. The cell invasion and migration were measured by transwell assay. RNA and protein levels were tested by RT-PCR and western blot, respectively. The regulatory function of miR-30c-5p on Forkhead box D1 (FOXD1), FOXD1 on Krüppel-like factor 12 (KLF12) was tested by luciferase reporter assay or/and ChIP assay. Meanwhile, a liver cancer lung metastasis mice model was used to examine the functions of echinacoside and miR-30c-5p on HCC metastasis in vivo. Moreover, the correlations among miR-30c-5p, FOXD1, KLF12, and HCC prognosis was analyzed using clinical sample and TCGA database. Based on both in vitro and in vivo investigations, we found that echinacoside could inhibit HCC cell migration, invasiveness, and tumor metastasis, and associated with the enhanced miR-30c-5p/FOXD1/KLF12 axis. Furthermore, through analyzing the interactions among intermediate molecules, we revealed that miR-30c-5p, FOXD1, and KLF12üere clinically relevant with each other in HCC patients, correlated with HCC prognosis, and regulated by echinacoside to contribute in the inhibition of HCC progression. These findings suggest that echinacoside could inhibit HCC progression, and the mechanism related to the enhanced miR-30c-5p/FOXD1/KLF12 axis. Moreover, the abovementioned intermediate molecules might serve as prospective biomarkers for HCC prognosis.
Read full abstract