Although most petroleum oil species can be identified by their fluorescence spectra, overlapping fluorescence spectra make identification difficult. This study aims to address the issue that fluorescence spectroscopy is ineffective in identifying overlapping oil species. In this study, an equivalent model of overlapping oil species with fluorescence spectra was established. The linear discriminant analysis (LDA)-assisted machine learning (ML) algorithms K nearest neighbor (KNN), decision tree (DT), and random forest (RF) improved the identification of fluorescent spectrally overlapping oil species for diesel-lubricant oils. The identification accuracies of two-dimensional convolutional neural network (2DCNN), LDA combined with the ML algorithms effectively all 100 %. Furthermore, Partial Least Squares Regression (PLSR) algorithm, Support Vector Regression (SVR) algorithm, DT regression algorithm, and RF regression algorithm were also used to identify the lubricant concentration in diesel-lubricant oils. The coefficient of determination of the DT was 1, and the root-mean-square error was 0, which identified the concentration of lubricant oils in them accurately and without error.