Abstract
Recently, a new type of lubricant called two-phase lubricants has been developed to realize a high viscosity index. Two-phase lubricants are mixtures of two different lubricants, realizing low viscosity even at low temperatures due to the temperature dependence of the solubility of the lubricant molecules. In the present paper, the effect of surface energy on the tribological behavior of the two-phase lubricant is clarified using in situ observation with reflection spectroscopy. Sliding surfaces with high hydrogen-bonding terms in the surface energy components attracted high-polar lubricants, resulting in reduced friction. Analysis of the theoretical friction coefficient using Couette flow assumption revealed an important design concept of two-phase lubricants: the concentration of high viscosity lubricants on solid surfaces develops a viscosity distribution in the oil film, resulting in reduced friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.