AbstractIn this study, the petrology, zircon U–Pb ages, Lu–Hf isotopic compositions, whole-rock geochemistry and Sr–Nd isotopes for newly recognized low-Mg and high-Mg adakitic rocks from the North Altun orogenic belt were determined. The results will provide important insights for understanding the continuities of the North Qilian and North Altun orogenic belts during early Palaeozoic time. The low-Mg adakitic granitoids (445 to 439 Ma) are characterized by high SiO2(69–70 wt %), low Mg no. (43–48) and low Cr and Ni contents. In contrast, the high-Mg adakitic granitoids (425 to 422 Ma) have relatively lower SiO2(65–67 wt %), higher Mg no. (60–62) and higher Cr and Ni contents. The low-Mg adakitic rocks have high initial87Sr/86Sr ratios (0.7073–0.7084), negative εNd(t) (−1.9 to −4.0) and εHf(t) values (−6.8 to −2.0), and old zircon Hf model ages (1.4–1.7 Ga). In contrast, the high-Mg adakitic rocks show lower initial87Sr/86Sr ratios (0.7044–0.7057), higher εNd(t) (−0.7 to 3.1) and positive εHf(t) values (2.0 to 6.9), with younger zircon Hf model ages (0.9–1.2 Ga). These results suggest that the low-Mg adakitic rocks were probably generated by the partial melting of thickened crust, whereas the high-Mg adakitic rocks were derived from the anatexis of delaminated lower crust, which subsequently interacted with mantle magma upon ascent. The data obtained in this study provide significant information about the geological and tectonic processes after the closure of the Altun Ocean. The continent–continent collision and thickening probably occurred during 450–440 Ma with the formation of low-Mg adakitic rocks, and the transition of the tectonic regime from compression to extension probably occurred at 425–422 Ma with the formation of high-Mg adakitic rocks. The geochemical, geochronological and petrogenetic similarities between the North Altun and North Qilian adakitic rocks suggest that these two orogenic belts were subjected to similar tectonomagmatic processes during early Palaeozoic times.