Mendelian bone fragility disorders are caused by genetic variants that can be inherited in an autosomal dominant, autosomal recessive or X-linked manner and have a large detrimental effect on bone strength. As a rule, the more damaging the genetic defect is, the earlier the first fracture will occur, typically during bone development. This review focusses on conditions where bone fragility is the most conspicuous characteristic, of which osteogenesis imperfecta (OI) is the best-known disorder. The large majority of individuals with an OI phenotype have disease-causing dominant variants in COL1A1 or COL1A2, the genes coding for collagen type I. Interestingly, large sequencing databases indicate that there are about 10 times more carriers of COL1A1/COL1A2 variants that should lead to OI than there are individuals with a diagnosis of OI. It is possible that at least some of these variants lead to incomplete OI phenotypes and are diagnosed as osteoporosis during adulthood. Apart from mutations affecting collagen type I production, biallelic mutations in LRP5 and WNT1 can cause very rare and severe bone fragility disorders. Heterozygous pathogenic variants in these genes are much more common and can cause the clinical picture of primary osteoporosis. As sequencing studies are more widely performed in adults with bone fragility disorders, evidence is emerging that what appears as primary osteoporosis in fact can be due to mutations in bona fide OI genes. The distinction between OI and primary osteoporosis is therefore likely to blur in future.