The study of energy savings in ventilation systems within buildings is crucial. Impinging jet ventilation (IJV) systems have garnered significant interest from researchers. The identification of the appropriate location for the IJV reveals a gap in the existing literature. This research was conducted to address the existing gap by examining the impact of IJV location on energy savings and thermal comfort. A comprehensive three-dimensional CFD model is examined to accurately simulate the real environment of an office room (3 × 3 × 2.9 m3) during cooling mode, without the application of symmetrical plans. Four locations have been selected: two at the corners and two along the midwalls, designated for fixed-person positions. The return vent height is analyzed utilizing seven measurements: 2.9, 2.6, 2.3, 1.7, 1.1, 0.8, and 0.5 m. The RNG k–ε turbulence model is implemented alongside enhanced wall treatment. The findings indicated that the optimal range for the return vent height is between 1.7 and 0.8 m. It is advisable to utilize the IJV midwall 1 location, positioned behind the seated individual and away from the exterior hot wall. It is characterized by low vortex formation in the local working zone that contributes to a more comfortable sensation while providing recognized energy-saving potential.
Read full abstract