Many animals alternate between different media, such as air and water, thanks to specific adaptations. Among birds, penguins (Sphenisciformes) have the most extreme morphological, physiological, and behavioural adaptations to their amphibious lifestyle. Their auditory perception of sound, potentially matching different impedances in air and under water, is largely unknown particularly in terms of whether their underwater adaptations may have affected their in-air hearing capacity. In this context, we investigated the hearing ability of four captive Humboldt penguins (Spheniscus humboldti) in air using psychophysical hearing tests. The 50% hit rate was found to be below 76dB rms re 20 µPa between 0.250kHz and 10kHz, with most sensitive hearing at 2kHz (mean threshold of 15.3dB rms re 20 µPa). The four penguins showed large inter-individual variation in sensitivity at a given frequency but within a common audiogram shape. Despite the variability, penguins detected 0.250kHz at comparably low sound levels (mean = 36.8dB rms re 20 µPa) after a rapid decline of sensitivity at 0.500kHz (mean = 64.1dB rms re 20 µPa). This finding was unexpected, and it is therefore difficult to interpret whether it is an artefact of the methods or a biologically relevant finding. An extensive discussion is presented and suggests that this finding may be biologically relevant but would need further investigation to reveal the underlying mechanisms.
Read full abstract