BackgroundChronic fluoride toxicity induces oxidative strain and lipid peroxidation and imparts deleterious effects on human metabolic organs. AimThe present study aimed to expose the defensive impact of ferulic acid against sodium fluoride (NaF) induced hepatorenal dysfunction at the biochemical and antioxidative systems. MethodsIn-vivo. Rats were arbitrarily separated into five groups as control, sodium fluoride-treated (200 ppm kg −1), vitamin C -as a positive control, and FA co-administered groups with 10 mg kg −1 and 20 mg kg −1 body weight for 56 days. In the present investigation, we measured antioxidant enzymes, superoxide dismutase, catalase, and lactate dehydrogenase by electrozymographic and spectrophotometric methods. Biochemical assessment of TBARS, conjugated diene, and different serum biomarkers was done for liver and kidney functionality tests.In-silico. An in-silico study was conducted through a molecular docking experiment to evaluate the binding potentiality of FA by employing AutoDock Vina [version 1.5.6] to overcome the abnormality in the activities of catalase, and superoxide dismutase in NaF promoted toxicity of hepatorenal system.In-vitro. An in vitro biochemical experiment was conducted to support the in-silico study. ResultsSuperoxide dismutase and catalase were decreased in the intoxicated rat. Ferulic acid (FA) as an antioxidant remarkably defended the NaF-mediated deterioration of the antioxidative status in the hepatorenal system, lowering lipid peroxidation products, malondialdehyde, and conjugated diene. Serum biomarkers, ALT, AST, ALP, urea, and creatinine increased in the intoxicated group than in control. Ferulic acid significantly neutralized the ill effects of NaF on serum lipid profile. In-silico analysis hypothesized the strong interaction of FA with the active side of catalase and superoxide dismutase that prevented the binding of NaF at the active site of these mentioned enzymes and this was further validated by in-vitro assay. ConclusionHowever, FA modulates free radical generation and protected these metabolic organs against sodium fluoride-induced injury.
Read full abstract