To explore the clinical characteristics and genetic variants in three children with late-onset Multiple acyl-Coenzyme A dehydrogenase deficiency (MADD type Ⅲ). Clinical data of three children diagnosed with late-onset MADD at the Children's Hospital Affiliated to Zhengzhou University between March 2020 and March 2022 were retrospectively analyzed. All children were subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. All children had received improved metabolic therapy and followed up for 1 ~ 3 years. The children had included 2 males and 1 female, and aged from 2 months to 11 years and 7 months. Child 1 had intermittent vomiting, child 2 had weakness in lower limbs, while child 3 had no symptom except abnormal neonatal screening. Tandem mass spectrometry of the three children showed elevation of multiple acylcarnitines with short, medium and long chains. Children 1 and 2 showed increased glutaric acid and multiple dicarboxylic acids by urine Gas chromatography-mass spectrometry (GC-MS) analysis. All children were found to harbor compound heterozygous variants of the ETFDH gene, including a paternal c.1211T>C (p.M404T) and a maternal c.488-22T>G variant in child 1, a paternal c.1717C>T (p.Q573X) and a maternal c.250G>A (p.A84T) variant in child 2, and a paternal c.1285+1G>A and maternal c.629A>G (p.S210N) variant in child 3. As for the treatment, high-dose vitamin B2, levocarnitine and coenzyme Q10 were given to improve the metabolism, in addition with a low fat, hypoproteinic and high carbohydrate diet. All children showed a stable condition with normal growth and development during the follow-up. The compound heterozygous variants of the ETFDH gene probably underlay the muscle weakness, remittent vomiting, elevated short, medium, and long chain acylcarnitine, as well as elevated glutaric acid and various dicarboxylic acids in the three children with type Ⅲ MADD.
Read full abstract