Autonomous platoons are good alternatives for cargo transportation, with many approaches to safety and efficiency issues. In the last decades, much effort has been employed in this context, with solutions ranging from low-level control laws to learning strategies. Although some papers have concentrated on methods robust to disturbances or resilient to disruptions, most of the current literature assumes that the platoon starts and remains connected all the time, even when subjecting vehicles to limited communication ranges and time-delay. Therefore, in this paper, we address the problem of connectivity maintenance and stability of platoons under the complete disconnection of vehicles. The main goal is to increase the tolerance to agent exits, external elements (such as traffic lights and human-driven vehicles), and non-ideal initial conditions, improving traffic safety in mixed traffic scenarios. By modeling the network connection as a Directed Acyclic Graph, we use a state-machine policy to recover connectivity and regulate the spacing distance to other vehicles under heterogeneous time-delays. We demonstrate that this state alteration can be interpreted as a reference tracking problem and propose a design procedure that provides stability and zero spacing error in steady-state. Our control protocol allows vehicles to reach a consensus with the team, even when they start disconnected from other ones. Results with agent-based and nonlinear simulations illustrate the effectiveness of our approach.
Read full abstract